Skip to main content

TCP/IP and the OSI Reference Model

As illustrated in Figure 1.2, the TCP/IP model consists of four layers, each of which can have several sublayers. These layers correlate roughly to layers in the OSI reference model and define similar functions. Some of the TCP/IP layers correspond directly with layers in the OSI reference model while other span several OSI layers. The four TCP/IP layers are:
...

• The TCP/IP Application Layer refers to communications services to applications and is the interface between the network and the application. It is also responsible for presentation and controlling communication sessions. It spans the Application Layer, Presentation Layer and Session Layer of the OSI reference model. Examples include: HTTP, POP3, and SNMP.
• The TCP/IP Transport Layer defines several functions, including the choice of protocols, error recovery and flow control. The transport layer may provide for retransmission, i.e., error recovery, and may use flow control to prevent unnecessary congestion by attempting to send data at a rate that the network can accommodate, or it might not, depending on the choice of protocols. Multiplexing of incoming data for different flows to applications on the same host is also performed. Reordering of the incoming data stream when packets arrive out of order is included. It correlates with the Transport Layer of the OSI reference model. Examples include: TCP and UDP, which are called Transport Layer, or Layer 4, protocols.
• The TCP/IP Internetwork Layer defines end-to-end delivery of packets and defines logical addressing to accomplish this. It also defines how routing works and how routes are learned; and how to fragment a packet into smaller packets to accommodate media with smaller maximum transmission unit sizes. It correlates with the Network Layer of the OSI reference model. Examples include: IP and ICMP.
• The TCP/IP Network Interface Layer is concerned with the physical characteristics of the transmission medium as well as getting data across one particular link or medium. This layer defines delivery across an individual link as well as the physical layer specifications. It spans the Data Link Layer and Physical Layer of the OSI reference model. Examples include: Ethernet and Frame Relay.

FIGURE: OSI, TCP/IP and NetWare
FIGURE: OSI, TCP/IP and NetWare

Comments

Post a Comment

Popular posts from this blog

[韓日関係] 首相含む大幅な内閣改造の可能性…早ければ来月10日ごろ=韓国

div not scrolling properly with slimScroll plugin

I am using the slimScroll plugin for jQuery by Piotr Rochala Which is a great plugin for nice scrollbars on most browsers but I am stuck because I am using it for a chat box and whenever the user appends new text to the boxit does scroll using the .scrollTop() method however the plugin's scrollbar doesnt scroll with it and when the user wants to look though the chat history it will start scrolling from near the top. I have made a quick demo of my situation http://jsfiddle.net/DY9CT/2/ Does anyone know how to solve this problem?

Why does this javascript based printing cause Safari to refresh the page?

The page I am working on has a javascript function executed to print parts of the page. For some reason, printing in Safari, causes the window to somehow update. I say somehow, because it does not really refresh as in reload the page, but rather it starts the "rendering" of the page from start, i.e. scroll to top, flash animations start from 0, and so forth. The effect is reproduced by this fiddle: http://jsfiddle.net/fYmnB/ Clicking the print button and finishing or cancelling a print in Safari causes the screen to "go white" for a sec, which in my real website manifests itself as something "like" a reload. While running print button with, let's say, Firefox, just opens and closes the print dialogue without affecting the fiddle page in any way. Is there something with my way of calling the browsers print method that causes this, or how can it be explained - and preferably, avoided? P.S.: On my real site the same occurs with Chrome. In the ex